jueves, 6 de octubre de 2011

MODULACION PCM-SISTEMA AMERICANO Y EUROPEO

Esta modulación es un esquema para transmitir una señal de datos analógica en una señal digital.
Cuando una señal modulada se altera con el ruido, no existe en el receptor formar alguna de distinguir el valor transmitido exacto. Sin embargo, si sólo se permiten unos pocos valores discretos del parámetro modulado y si la separación entre dichos valores es grande en comparación con la perturbación producida por el ruido, será más sencillo decidir con precisión en el receptor, los valores específicos transmitidos.





En la modulación de pulsos codificados (PCM = Pulse Code Modulation), para concretar lo antedicho, se debe realizar un muestreo de la señal, cuantificar la misma y codificarla.
La señal se muestrea a intervalotes regulares, luego dichos valores se cuantifican a un valor discreto predeterminado más próximo; por último la señal muestreada y cuantificada en amplitud, es codificada.
El codificador convierte las muestras digitales en un código adecuado y de esta forma se genera la correspondiente señal modulada.
La cantidad de niveles de cuantificación depende de la cantidad de bits que se empleen en la codificación, puesto que con n bits tendremos 2n combinaciones posibles.
Como se requieren varios dígitos para cada muestra del mensaje, el ancho de banda en este caso es mucho mayor que el ancho de banda del mensaje.
Posteriormente, la señal obtenida se puede transmitir en ASK, FSK, o PSK.
La transformación de una señal analógica en digital por PCM se realiza mediante 3 pasos:

1) Muestreo


En los sistemas de transmisión de audio, por ejemplo, la señal es transportada de manera continua a lo largo de la portadora. Sin embargo, la pregunta fue si esto era realmente necesario para transmitir la señal completa  o si la transmisión del valor de la señal en intervalos regulares pudiera ser eficiente.

Nyquist examino el problema y concluyo que muestras tomadas en intervalos regulares de tiempo pueden ser usadas para transmitir una señal. Una señal continua que no contenga componentes espectrales mayores que la frecuencia B esta determinada en forma única por sus valores en intervalos uniformes menores a 1/2B. Expresado en términos de frecuencia, establece que la "frecuencia de muestreo debe ser mayor o igual al doble de la frecuencia máxima de la señal muestreada"
fig

- Tomando la voz humana como ejemplo, se tiene :
fs= 2fmax

Donde:

fmax= 4kHz Banda de la voz humana

Por lo tanto, las muestras se tomarían a un intervalo de tiempo de 125us.
Ts=1/[2(fmax)]

2) Cuantización


La cuantización representa la amplitud de un muestra por la amplitud del nivel discreto más cercano. Cada valor de muestra tendrá que ser representado por un código. El numero de niveles de cuantización "M" esta estrechamente relacionado con el numero de bits "n" que son necesarios para codificar una señal. En casos prácticos se usan 8 bits para codificar cada muestra, por lo tanto se tiene:

M=2= 256 niveles

3) Codificación

Después de ser cuantizada, la muestra de entrada, esta limitada a 256 valores discretos. La mitad de estas son muestras codificadas positivas, la otra mitad son muestras codificadas negativas. Existen muchos códigos diferentes:

- Natural.
- Simétrico.

miércoles, 28 de septiembre de 2011

CONVERSION ANALOGICA-DIGITAL Y VISCEVERSA

PROCESO DE CONVERSION  ANALOGICA DIGITAL
La digitalización o conversión analógica-digital (conversión A/D) consiste básicamente en realizar de forma periódica medidas de la amplitud (tensión) de una señal (por ejemplo, la que proviene de un micrófono si se trata de registrar sonidos, de un sismógrafo si se trata de registrar vibraciones o de una sonda de un osciloscopio para cualquier nivel variable de tensión de interés), redondear sus valores a un conjunto finito de niveles preestablecidos de tensión (conocidos como niveles de cuantificación) y registrarlos como números enteros en cualquier tipo de memoria o soporte. La conversión A/D también es conocida por el acrónimo inglés ADC (analogue to digital converter).
En esta definición están patentes los cuatro procesos que intervienen en la conversión analógica-digital:
  1. Muestreo: el muestreo (en inglés, sampling) consiste en tomar muestras periódicas de la amplitud de onda. La velocidad con que se toma esta muestra, es decir, el número de muestras por segundo, es lo que se conoce como frecuencia de muestreo.
  2. Retención (en inglés, hold): las muestras tomadas han de ser retenidas (retención) por un circuito de retención (hold), el tiempo suficiente para permitir evaluar su nivel (cuantificación). Desde el punto de vista matemático este proceso no se contempla, ya que se trata de un recurso técnico debido a limitaciones prácticas, y carece, por tanto, de modelo matemático.
  3. Cuantificación: en el proceso de cuantificación se mide el nivel de voltaje de cada una de las muestras. Consiste en asignar un margen de valor de una señal analizada a un único nivel de salida. Incluso en su versión ideal, añade, como resultado, una señal indeseada a la señal de entrada: el ruido de cuantificación.
  4. Codificación: la codificación consiste en traducir los valores obtenidos durante la cuantificación al código binario. Hay que tener presente que el código binario es el más utilizado, pero también existen otros tipos de códigos que también son utilizados.





Proceso de una señal digital a analógica
En electrónica, dispositivo que convierte una entrada digital (generalmente binaria) a una señal analógica (generalmente voltaje o carga eléctrica). Los conversores digital-analógico son interfaces entre el mundo abstracto digital y la vida real analógica. La operación reversa es realizada por un conversor analógico-digital (ADC).
Este tipo de conversores se utiliza en reproductores de sonido de todo tipo, dado que actualmente las señales de audio son almacenadas en forma digital (por ejemplo, MP3 y CDs), y para ser escuchadas a través de los altavoces, los datos se deben convertir a una señal analógica. Los conversores digital-analógico también se pueden encontrar en reproductores de CD, reproductores de música digital, tarjetas de sonidos de PC, etc.
Funcionamiento de un D/A
Mediante una suma ponderada de los dígitos de valor 1 se consigue, en forma muy simple, un conversor digital-analógico rápido; la ponderación puede hacerse con una serie de resistencias en progresión geométrica (cada una mitad de la anterior), lo cual obliga a utilizar un amplio rango de resistencias, o bien mediante una red R-2R que efectúa sucesivas divisiones por 2.
Puede convertirse una tensión en número binario utilizando un conversor opuesto D/A, a través de la comparación entre la tensión de entrada y la proporcionada por dicho conversor D/A aplicado a un generador de números binarios; se trata de aproximar el número-resultado a aquel cuya correspondiente tensión analógica es igual a la de entrada. La aproximación puede hacerse de unidad en unidad, mediante un simple contador, o dígito a dígito mediante un circuito secuencial específico
En los sistemas digitales la precisión viene dada por la utilización de dos símbolos 1/0 y por la separación entre las tensiones que los representan. En cambio, en el tratamiento de tensiones analógicas y, por tanto, en los conversores D/A y A/D, hemos de preocuparnos de la precisión y de las diversas causas de error que le afectan: desplazamiento del origen, linealidad, resolución,...
Se inluye en este capítulo, por amplitud, a conversión tensión-frecuencia (V → f), que puede servir también (añadiéndole un frecuencímetro) con conversión A/D. Conceptualmente la conversión analógica-digital consiste en realizar la suma ponderada de los diversos dígitos que configran el número binario; el valor relativo de cada uno de ellos viene dado por la correspondiene potencia de 2:

Esta suma puede realizarse mediante un sencillo circuito sumador con resistencias ponderadas (según la relación R, R/2, R/4, R8, R/16...) como el de la figura:
Supuesto que las tensiones que corresponden a los valores booleanos sean 0 y +V: Vo = - (R' / R). (+V). (D0 + 2.D1 + 4.D2 + 8.D3 +... )
El último paréntesis de la expresión anterior expresa el valor del número binario ... D3 D2 D1 D0 y el factor inicial V.R'/R determina el valor de tensión asignado a cada unidad; las resistencias R' y R permiten ajustar dicho valor a la tensión unitaria que se desee.
Resulta un circuito sumamente sencillo para obtener una tensión analógica a partir de las tensiones de los dígitos binarios del número que se desea convertir. Habida cuenta de que la etapa sumadora es inversora, se obtendrá una tensión negativa, que puede transformarse fácilmente en positiva mediante una segunda etapa amplificadora inversora de ganancia unidad.
Las tensiones booleanas que presentan los diversos dígitos de un número binario (salidas de los correspondientes terminales del circuito digital, generalmente salidas de circuitos integrados) no ofrecen adecuada precisión: ambas tensiones, VoL ≈ 0 V y VoH ≈ +V, no son valores muy precisos.
Por ello, para aumentar la precisión del conversor, no se utilizan directamente las tensiones de los dígitos a convertir sino una tensión única de referencia de alta precisión, la cual se conecta (caso de dígito de valor 1) o no (valor 0) a las correspondientes resistencias sumadoras mediante interruptores; además, para disminuir los efectos capacitivos propios de los conmutadores y aumentar la velocidad de conmutación, ésta se efectúa entre dos posiciones de igual tensión.
Cada conmutador se conecta hacia la entrada del amplificador cuando el valor del correspondiente dígito es 1; en otro caso, se conecta directamente hacia la línea de 0 V. Vo = - (R' / R). Vref.. (D0 + 2.D1 + 4.D2 + 8.D3 +... )
La precisión de este conversor depende de la precisión de las resistencias y de la tensión de referencia así como de las características del amplificador operacional, especialmente en lo relativo a tensión y corrientes de offset.
Ahora bien, esta red sumadora requiere resistencias de valores muy diferentes (por ejemplo para 12 bits ha de llegarse desde R hasta R/4096), siendo extremadamente difícil integrar tal diversidad de resistencias con la precisión necesaria. Por ello, resulta preferible utilizar una red de resistencias R-2R en escalera o red divisora de tensión, que posee la propiedad de que la resistencia de carga vista desde cualquier nudo de la red hacia adelante es de idéntico valor: 2R.

Esta red de resistencias tiene la propiedad de que en cada nudo se encuentran en paralelo sendas resistencias de igual valor 2R, una de las cuales es la equivalente del resto del circuito; de forma que en cada nudo la intensidad de divide en dos partes iguales y, de esta forma, cada nudo realiza una división de la tensión del nudo anterior por 2.
Utilizando este tipo de red como sumadora, mediante conmutadores entre dos posiciones (ambas con tensión de referencia 0 V) según el esquema siguiente, puede obtenerse un conversor D/A que solamente utiliza dos valores de resistencias R y 2R.
La segunda etapa amplificadora sirve para que la tensión de salida sea positiva e introduce la amplificación con el factor R'/R. Habida cuenta la sucesiva división de tensiones e intensidades que se produce en cada nudo:

Con este tipo de red sumadora se configura una amplia gama de conversores D/A integrados, de alta precisión, ya que es posible conseguir gran precisión en la red de resistencias y en la tensión de referencia (utilizando un zener de alta precisión bien estabilizado). Ello permite asegurar una fuerte linealidad en la conversión, con errores inferiores a la mitad del paso en tensión correspondiente a una unidad.
Los conversores D/A más comunes de este tipo son de 8 y de 12 bits; un conversor de 8 bits permite una resolución de 256, es decir, para un intervalo de conversión 0-10 V a cada unidad le corresponden aproximadamente 40 mV; la resolución de un conversor de 12 bits es de 4096 pasos, 2.5 mV.
En tecnología MOS los conmutadores se realizan mediante transistores NMOS alternativos, entre cuyos terminales de puerta se conecta un inversor; se consiguen tiempos de respuesta globales (desde que se presenta el valor digital, hasta que aparece el correspondiente valor analógico) inferiores al microsegundo. Además, en aplicaciones relativas a la generación de ondas, en las cuales la salida va siguiendo sucesivamente valores próximos de la onda a generar, el tiempo de transición entre un valor y otro resulta mucho menor, pudiéndos